Lecture 26(b): Signatures on Arbitrary-length Messages

- Suppose we are given a (Gen, Sign, Ver) digital signature scheme for B-bit messages (i.e., messages in $\{0,1\}^{B}$), for some fixed $B \in \mathbb{N}$. We shall refer to this signature scheme as the basic signature scheme
- Given this signature scheme (Gen*, Sign*, Ver*) for B-bit messages, construct a signature scheme for arbitrary-length messages (i.e., messages in $\{0,1\}^{*}$)

First Attempt

- Given a message $m \in\{0,1\}^{*}$, we use standard padding technique to make its length a multiple of B and, then, break it into B-bit blocks $\left(m_{1}, m_{2}, \ldots, m_{\alpha}\right)$, where $m_{1}, m_{2}, \ldots, m_{\alpha} \in\{0,1\}^{B}$
- Our first strategy is to sign the blocks $m_{1}, m_{2}, \ldots, m_{\alpha}$ using the basic signature scheme. Suppose the signatures of $m_{1}, m_{2}, \ldots, m_{\alpha}$ are, respectively, $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\alpha}$
- Our first attempt generates the signature of the message $m \equiv\left(m_{1}, m_{2}, \ldots, m_{\alpha}\right)$ as the signature $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\alpha}\right)$

Vulnerability: Prefix Attacks

- Suppose we are given the signature of the message $m=\left(m_{1}, m_{2}, \ldots, m_{\alpha}\right)$ as the signature $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\alpha}\right)$
- We can generate the signature of the message $m^{\prime}=\left(m_{1}, m_{2}, \ldots, m_{i}\right)$ as $\sigma^{\prime}=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{i}\right)$, for any $1 \leqslant i<\alpha$
- Solution. We need to tie the "number of the blocks" into the message being signed by the basic scheme
- Given a message $m \in\{0,1\}^{*}$, we use standard padding technique to make its length a multiple of $B / 2$ and, then, break it into $B / 2$-bit blocks $\left(m_{1}, m_{2}, \ldots, m_{\alpha}\right)$, where $m_{1}, m_{2}, \ldots, m_{\alpha} \in\{0,1\}^{B / 2}$
- Our second strategy is to sign the blocks $\left(\alpha \| m_{1}\right),\left(\alpha \| m_{2}\right), \ldots,\left(\alpha \| m_{\alpha}\right)$ using the basic signature scheme. We clarify that $\left(\alpha \| m_{i}\right)$ is the concatenation of (a) $B / 2$-bit representation of the number of total blocks α, and (b) the $B / 2$-bit message m_{i}. Suppose the signatures are, respectively, $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\alpha}$
- Our second attempt generates the signature of the message $m \equiv\left(m_{1}, m_{2}, \ldots, m_{\alpha}\right)$ as the signature $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\alpha}\right)$

Vulnerability: Permutation Attacks

- Suppose we are given the signature of the message $m=\left(m_{1}, m_{2}, \ldots, m_{\alpha}\right)$ as the signature $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\alpha}\right)$
- We can generate the signature of the message $m^{\prime}=\left(m_{2}, m_{1}, \ldots, m_{\alpha}\right)$ as $\sigma^{\prime}=\left(\sigma_{2}, \sigma_{1}, \ldots, \sigma_{\alpha}\right)$
- In general, we can permute the message blocks of m and generate the signature of the permuted message
- Solution. We need to tie the "position of the message block" into the message being signed by the basic scheme

Third Attempt

- Given a message $m \in\{0,1\}^{*}$, we use standard padding technique to make its length a multiple of $B / 3$ and, then, break it into $B / 3$-bit blocks $\left(m_{1}, m_{2}, \ldots, m_{\alpha}\right)$, where $m_{1}, m_{2}, \ldots, m_{\alpha} \in\{0,1\}^{B / 3}$
- Our second strategy is to sign the blocks $\left(\alpha\|1\| m_{1}\right),\left(\alpha\|2\| m_{2}\right), \ldots,\left(\alpha\|\alpha\| m_{\alpha}\right)$ using the basic signature scheme. We clarify that $\left(\alpha \| m_{i}\right)$ is the concatenation of (a) $B / 3$-bit representation of the number of total blocks α, (b) $B / 3$-bit representation of the position i, and (c) the $B / 3$-bit message m_{i}. Suppose the signatures are, respectively, $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\alpha}$
- Our third attempt generates the signature of the message $m \equiv\left(m_{1}, m_{2}, \ldots, m_{\alpha}\right)$ as the signature $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\alpha}\right)$

Vulnerability: Splicing Attacks

- Suppose we are given the signature of the message $m=\left(m_{1}, m_{2}, \ldots, m_{\alpha}\right)$ as the signature $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\alpha}\right)$
- Suppose we are given the signature of another message (of the same number of blocks) $m^{\prime}=\left(m_{1}, m_{2}, \ldots, m_{\alpha}\right)$ as the signature $\sigma^{\prime}=\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \ldots, \sigma_{\alpha}^{\prime}\right)$
- We can generate the signature of the message $m^{\prime \prime}=\left(m_{1}^{\prime}, m_{2}, \ldots, m_{\alpha}\right)$ as $\sigma^{\prime \prime}=\left(\sigma_{1}^{\prime}, \sigma_{2}, \ldots, \sigma_{\alpha}\right)$
- In general, we can splice the blocks of m and m^{\prime} and generate the message $m^{\prime \prime}$ and forge the signature on $m^{\prime \prime}$
- Solution. We need to "tie together all blocks of a particular message" into the message being signed by the basic scheme

Fourth Attempt

- Given a message $m \in\{0,1\}^{*}$, we use standard padding technique to make its length a multiple of $B / 4$ and, then, break it into $B / 4$-bit blocks $\left(m_{1}, m_{2}, \ldots, m_{\alpha}\right)$, where $m_{1}, m_{2}, \ldots, m_{\alpha} \in\{0,1\}^{B / 4}$
- Pick a random string $s \stackrel{\S}{\leftarrow}\{0,1\}^{B / 4}$
- Our second strategy is to sign the blocks $\left(\alpha\|1\| s \| m_{1}\right),\left(\alpha\|2\| s \| m_{2}\right), \ldots,\left(\alpha\|\alpha\| s \| m_{\alpha}\right)$ using the basic signature scheme. We clarify that $\left(\alpha \| m_{i}\right)$ is the concatenation of (a) $B / 4$-bit representation of the number of total blocks α, (b) $B / 4$-bit representation of the position i, (c) the random bit string s, and (d) the $B / 4$-bit message m_{i}. Suppose the signatures are, respectively, $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\alpha}$
- Our fourth attempt generates the signature of the message $m \equiv\left(m_{1}, m_{2}, \ldots, m_{\alpha}\right)$ as the signature $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\alpha}\right)$.
- The idea is that all blocks of a message shall have the same random bit-string s. Furthermore, the bitstring corresponding to two messages shall be different with high probability (using the Birthday bound)

Security of the Fourth Attempt

- The fourth attempt ensures that prefix, permutation, and splicing attacks cannot forge signatures
- In fact, this scheme is secure against all forging strategies (not just the three forging strategies mentioned above). In a higher-level course, we can prove this stronger result

It is left as an exercise to write the algorithms (Gen*, Sign*, Ver*) using the algorithms (Gen, Sign, Ver)

