Lecture 26(b): Signatures on Arbitrary-length Messages

Problem Statement

- Suppose we are given a (Gen, Sign, Ver) digital signature scheme for B-bit messages (i.e., messages in $\{0,1\}^B$), for some fixed $B \in \mathbb{N}$. We shall refer to this signature scheme as the basic signature scheme
- Given this signature scheme (Gen*, Sign*, Ver*) for B-bit messages, construct a signature scheme for <u>arbitrary-length</u> messages (i.e., messages in {0,1}*)

First Attempt

- Given a message $m \in \{0,1\}^*$, we use standard padding technique to make its length a multiple of B and, then, break it into B-bit blocks $(m_1, m_2, \ldots, m_{\alpha})$, where $m_1, m_2, \ldots, m_{\alpha} \in \{0,1\}^B$
- Our first strategy is to sign the blocks $m_1, m_2, \ldots, m_{\alpha}$ using the basic signature scheme. Suppose the signatures of $m_1, m_2, \ldots, m_{\alpha}$ are, respectively, $\sigma_1, \sigma_2, \ldots, \sigma_{\alpha}$
- Our first attempt generates the signature of the message $m \equiv (m_1, m_2, \dots, m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_{\alpha})$

Vulnerability: Prefix Attacks

- Suppose we are given the signature of the message $m = (m_1, m_2, \dots, m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_{\alpha})$
- We can generate the signature of the message $m'=(m_1,m_2,\ldots,m_i)$ as $\sigma'=(\sigma_1,\sigma_2,\ldots,\sigma_i)$, for any $1\leqslant i<\alpha$
- Solution. We need to tie the "number of the blocks" into the message being signed by the basic scheme

Second Attempt

- Given a message $m \in \{0,1\}^*$, we use standard padding technique to make its length a multiple of B/2 and, then, break it into B/2-bit blocks $(m_1, m_2, \ldots, m_{\alpha})$, where $m_1, m_2, \ldots, m_{\alpha} \in \{0,1\}^{B/2}$
- Our second strategy is to sign the blocks
 (α||m₁), (α||m₂),..., (α||m_α) using the basic signature scheme. We clarify that (α||m_i) is the concatenation of (a) B/2-bit representation of the number of total blocks α, and (b) the B/2-bit message m_i. Suppose the signatures are, respectively, σ₁, σ₂,...,σ_α
- Our second attempt generates the signature of the message $m \equiv (m_1, m_2, \dots, m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_{\alpha})$

Vulnerability: Permutation Attacks

- Suppose we are given the signature of the message $m = (m_1, m_2, \dots, m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_{\alpha})$
- We can generate the signature of the message $m' = (m_2, m_1, \dots, m_{\alpha})$ as $\sigma' = (\sigma_2, \sigma_1, \dots, \sigma_{\alpha})$
- In general, we can permute the message blocks of *m* and generate the signature of the permuted message
- Solution. We need to tie the "position of the message block" into the message being signed by the basic scheme

Third Attempt

- Given a message $m \in \{0,1\}^*$, we use standard padding technique to make its length a multiple of B/3 and, then, break it into B/3-bit blocks $(m_1, m_2, \ldots, m_{\alpha})$, where $m_1, m_2, \ldots, m_{\alpha} \in \{0,1\}^{B/3}$
- Our second strategy is to sign the blocks $(\alpha \| 1 \| m_1), (\alpha \| 2 \| m_2), \ldots, (\alpha \| \alpha \| m_{\alpha})$ using the basic signature scheme. We clarify that $(\alpha \| m_i)$ is the concatenation of (a) B/3-bit representation of the number of total blocks α , (b) B/3-bit representation of the position i, and (c) the B/3-bit message m_i . Suppose the signatures are, respectively, $\sigma_1, \sigma_2, \ldots, \sigma_{\alpha}$
- Our third attempt generates the signature of the message $m \equiv (m_1, m_2, \dots, m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_{\alpha})$

Vulnerability: Splicing Attacks

- Suppose we are given the signature of the message $m=(m_1,m_2,\ldots,m_{\alpha})$ as the signature $\sigma=(\sigma_1,\sigma_2,\ldots,\sigma_{\alpha})$
- Suppose we are given the signature of another message (of the same number of blocks) $m'=(m_1,m_2,\ldots,m_\alpha)$ as the signature $\sigma'=(\sigma'_1,\sigma'_2,\ldots,\sigma'_\alpha)$
- We can generate the signature of the message $m'' = (m'_1, m_2, \dots, m_{\alpha})$ as $\sigma'' = (\sigma'_1, \sigma_2, \dots, \sigma_{\alpha})$
- In general, we can splice the blocks of m and m' and generate the message m'' and forge the signature on m''
- **Solution**. We need to "tie together all blocks of a particular message" into the message being signed by the basic scheme

Fourth Attempt

- Given a message $m \in \{0,1\}^*$, we use standard padding technique to make its length a multiple of B/4 and, then, break it into B/4-bit blocks $(m_1, m_2, \ldots, m_{\alpha})$, where $m_1, m_2, \ldots, m_{\alpha} \in \{0,1\}^{B/4}$
- Pick a random string $s \xleftarrow{\$} \{0,1\}^{B/4}$
- Our second strategy is to sign the blocks $(\alpha \|1\|s\|m_1), (\alpha \|2\|s\|m_2), \ldots, (\alpha \|\alpha\|s\|m_\alpha)$ using the basic signature scheme. We clarify that $(\alpha \|m_i)$ is the concatenation of (a) B/4-bit representation of the number of total blocks α , (b) B/4-bit representation of the position i, (c) the random bit string s, and (d) the B/4-bit message m_i . Suppose the signatures are, respectively, $\sigma_1, \sigma_2, \ldots, \sigma_\alpha$
- Our fourth attempt generates the signature of the message $m \equiv (m_1, m_2, \dots, m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_{\alpha})$.
- The idea is that all blocks of a message shall have the same random bit-string s. Furthermore, the bitstring corresponding to two messages shall be different with high probability (using the Birthday bound)

Security of the Fourth Attempt

- The fourth attempt ensures that prefix, permutation, and splicing attacks cannot forge signatures
- In fact, this scheme is secure against <u>all forging strategies</u> (not just the three forging strategies mentioned above). In a higher-level course, we can prove this stronger result

It is left as an exercise to write the algorithms (Gen*, Sign*, Ver*) using the algorithms (Gen, Sign, Ver)